PyTorch中实现模型持久化的方法是什么

655Z技术栈 人工智能 2025年06月27日 13

在PyTorch中,可以使用torch.save()函数来实现模型的持久化。torch.save()函数可以将模型的权重、结构和其他参数保存到文件中,以便在以后加载和使用。以下是一个简单的示例:

import torch import torch.nn as nn #定义一个简单的神经网络模型 class SimpleModel(nn.Module): def __init__(self): super(SimpleModel, self).__init__() self.fc = nn.Linear(10, 1) def forward(self, x): return self.fc(x) model = SimpleModel() #保存模型 torch.save(model.state_dict(), 'model.pth') #加载模型 model_load = SimpleModel() model_load.load_state_dict(torch.load('model.pth'))

在上面的示例中,首先定义了一个简单的神经网络模型SimpleModel,然后通过torch.save()函数将模型的参数保存到文件model.pth中。最后使用torch.load()函数加载模型参数,并将其应用到新的模型中。通过这种方法,可以实现模型的持久化和加载。

提供PHP及ThinkPHP框架的定制开发、代码优化,PHP修改、ThinkPHP修改。

邮箱:yvsm@163.com 微信:yvsm316 QQ:316430983
关闭

用微信“扫一扫”